
Taylor series (lecture notes)
Arkady M. Alt

For any function f which has continuous derivative of order n on the
segment [c; d] and derivative of order n+ 1 on (c; d) and for any a 2 (c; d)

we will de�nepolynomial Tn (f ; a) (x) := f (a)+
nP
k=1

f (k) (a)

k!
xk which we call

Taylor�s Polynomial for function f with node a (deg Tn (f ; a) (x) � n if Tn
isn�t zero polynomial).
So, we have the correspondence (f; n; a) 7! Tn (f ; a) (x) :
If f in�nitely times di¤erentiable then we get the in�nite sequence of
Taylor�s polynomials:

T0 (f ; a) (x) = f (a) ; T1 (f ; a) (x) = f (a) +
f 0 (a)

1!
(x� a) ; T2 (f ; a) (x) =

f (a) +
f 0 (a)

1!
(x� a) + f

00 (a)

2!
(x� a)2 ; :::;

Tn (f ; a) (x) = f (a)+
f 0 (a)

1!
(x� a)+f

00 (a)

2!
(x� a)2+:::+f

(n) (a)

n!
(x� a)n ; ::::

where Tn (f ; a) (x) can be considered as partial sum of the series

(in�nite formal sum) T (f ; a) (x) := f (a) +
1P
n=1

f (k) (a)

k!
(x� a)k =

1P
n=0

f (n) (a)

n!
(x� a)n (here f (0) (a) = f (a)) which we call Taylor series

for function f and point a:
Now the two natural questions:
1. What is condition of convergence of this series;
2. When this in�nite sum equal to f (x) (in the case of convergence).
Let rn (x) := f (x)�Tn (f ; a) (x) :If lim

n!1
rn (x) = 0 then T (f ; a) (x) convergence

to f (x), that is f (x) = lim
n!1

Tn (f ; a) (x) = T (f ; a) (x) :

In the supposition that f is function which has continuous derivative of
order n on the segment [c; d] and derivative of order n+ 1 on (c; d) we
obtain r(m)n (a) = 0 for any m = 1; 2; ::; n:

Indeed, since r(m)n (x) = f (m) (x)� (Tn (f ; a) (x))(m) =

f (m) (x)�f
(m) (a)

m!
�m!�(x� a)

nP
k=m+1

�
f (k1) (a)

k!
� k (k � 1) ::: (k �m+ 1) (x� a)k�1

�
=)

r
(m)
n (a) = 0 for any m = 0; 1; ; 2:::; n:

De�nition.

Let lim
x!a

f (x) = 0 and lim
x!a

g (x) = 0 then if lim
x!a

f (x)

g (x)
= 0 we say that

f (x) in the point a has order of smallness bigger the g (x) and
write down that as follows f (x) = o (g (x)) :

In particular f (x) = o ((x� a)n) if lim
x!a

f (x)

(x� a)n = 0:
Obvious that:
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1. c � o ((x� a)n) = o (g (x)) for any constant c;

2.
o ((x� a)n)
(x� a)k

= o
�
(x� a)n�k

�
;for any k = 1; 2; :::; n�1 and if k = n then

o ((x� a)n)
(x� a)n = o (1) (f (x) = o (1) () lim

x!a
f (x) = 0);

3. (x� a)k o ((x� a)n) = o
�
(x� a)n+k

�
for any k 2 N:

4. o ((x� a)n) + o ((x� a)m) = o
�
(x� a)minfn;mg

�
:

Lemma 1 .
Let f di¤erentiable of order n� 1 in any x 2 (a� "; a+ ") for some " and
has derivative of order n in the point a and f (n) (x) is continuous in a:
Then f (x) = o ((x� a)n) i¤ f (a) = f 0 (a) = ::: = f (n) (a) = 0:
Proof (by Math Induction).

Su¢ ciency
1. Base of MI.
Let n = 1: Since tby Mean Value Theorem there is

cx 2 (a; x) ( (a; x) =
�
(a; x) if x > a
(x; a) if x > a

)

such that
f (x)

x� a =
f (x)� f (a)

x� a = f 0 (cx) and lim
x!a

cx = 0 then

lim
x!a

f (x)

x� a = lim
x!a

f 0 (cx) = f
0
�
lim
x!a

cx

�
= f 0 (a) = 0

(because f 0 is continuous in a). Thus, f (x) = o ((x� a)) :
2. Step of MI.
Let f (a) = f 0 (a) = ::: = f (n) (a) = f (n+1) (a) = 0 and f (n+1) (x) is
continuous in a:And let g (x) := f 0 (x) : Then

f 0 (a) = ::: = f (n) (a) = f (n+1) (a) = 0 () g (a) = g0 (a) = ::: = g(n) (a) = 0

and by supposition of MI we have g (x) = o ((x� a)n) ; i.e.

lim
x!a

g (x)

(x� a)n = 0:

Hence, lim
x!a

f (x)

(x� a)n+1
= lim
x!a

f (x)� f (a)
x� a � 1

(x� a)n = lim
x!a

f 0 (cx)�
1

(x� a)n =

lim
x!a

�
f 0 (cx)

(cx � a)n
� (cx � a)

n

(x� a)n
�
= lim

x!a

�
g (cx)

(cx � a)n
�
�
cx � a
x� a

�n�
= 0

because lim
x!a

cx = 0 =) lim
x!a

g (cx)

(cx � a)n
= lim

cx!a

g (cx)

(cx � a)n
= 0

and

����cx � ax� a

���� < 1: So, limx!a

f (x)

(x� a)n+1
= 0:

Necessity.
Let n 2 N and f (x) = o ((x� a)n) : Obviously that f (a) = 0 and
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f 0 (a) = lim
x!a

f (x)� f (a)
x� a = lim

x!a

f (x)

x� a = lim
x!a

o ((x� a)n)
x� a = lim

x!a
o
�
(x� a)n�1

�
= 0:

Since rn (a) = r0n (a) = ::: = r
(n)
n (a) = 0 then rn (x) = o ((x� a)n)

and we obtain

o ((x� a)n) = f (x) = f (a)+f
0 (a)

1!
(x� a)+f

00 (a)

2!
(x� a)2+:::+f

(n) (a)

n!
(x� a)n+rn (x) ()

(1) f (a)+
f 0 (a)

1!
(x� a)+f

00 (a)

2!
(x� a)2+:::+f

(n) (a)

n!
(x� a)n = o ((x� a)n)�rn (x) = o ((x� a)n)

:
Passing in (1) to the limit when x! a we obtain f (a) = 0:
Then

f 0 (a)

1!
+
f 00 (a)

2!
(x� a)+:::+f

(n) (a)

n!
(x� a)n�1 = o ((x� a)n)

x� a = o
�
(x� a)n�1

�
=) f 0 (a) = 0

and so on ... For any k < n assuming f (a) = f 0 (a) = ::: = f (k) (a) = 0
we obtain
f (k+1) (a)

(k + 1)!
(x� a)k+1 + :::+ f

(n) (a)

n!
(x� a)n = o ((x� a)n) ()

f (k+1) (a)

(k + 1)!
+:::+

f (n�k�1) (a)

n!
(x� a)n = o

�
(x� a)n�k�1

�
=) f (k+1) (a) = 0:

Let f in�nitely times di¤erentiable in a: Then f (n) (x) is continuous in a
for any n 2 N and now we can apply this Lemma to
rn (x) = f (x)� Tn (f ; a) (x) and obtain rn (x) = o ((x� a)n)

Thus, in that case f (x) = Tn (f ; a) (x)+o ((x� a)n) :(It is Polynomial Taylor
representation of f (x) with error in Peano form or, shortly Peano form of
Taylor representation for f (x) ).

Corollary from Lemma 1 .
Let f di¤erentiable of order n� 1 in any x 2 (a� "; a+ ") for some " and
has derivative of order n in the point a and f (n) (x) is continuous in a:
Then function g (x) ; such that g (x) is continuous on (a� "; a+ ") and
f (x) = (x� a)n g (x) holds in (a� "; a+ ") exists i¤

f (a) = f 0 (a) = ::: = f (n) (a) = 0:
Proof.
Su¢ ciency

Let f (a) = f 0 (a) = ::: = f (n) (a) = 0 and let g (x) :=

8<:
f (x)

(x� a)n ; x 6= a

0 if x = a
:
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Since lim
x!a

f (x)

(x� a)n = 0 then g (x) de�ned by such way is continuous in a:
Necessity.
let f (x) = (x� a)n g (x) ;where g is continuous in a:Then

f (x) = (x� a)n g (x) () f (x)

(x� a)n = g (x) =)

lim
x!a

f (x)

(x� a)n = 0 () f (x) = o ((x� a)n) =) f (a) = f 0 (a) = ::: = f (n) (a) = 0:�

Since lim
x!a

rn (x)

(x� a)n = 0 then for any " > 0 there is 0 < � < 1 such that

for any x 2 (a� �; a+ �) we have
���� rn (x)(x� a)n

���� < " () jrn (x)j < "�n =)

lim
n!1

rn (x) = 0 and, therefore,

lim
n!1

Tn (f ; a) (x) = f (x) () f (x) = T (f ; a) (x)

for any x 2 (a� �; a+ �) :
Peano form wery convenient for �nding limits, but more information of
error rn (x) give Lagrange form.
Let f (x) has on [p; q] continuous derivative of order n and derivative of
order n+ 1 on interval (p; q) :
For �xed x 2 (p; q) and any t 2 (p; q) we will �nd constant K
(not depends from t) such that

rn (x) = f (t)�Tn (f ; a) (t) = K (x� a)n+1 ;that isK :=
rn (x)

(x� a)n+1
:

Then for any t 2 (p; q) denote ' (t) := f (t)� Tn (f ; a) (t)�K (t� a)n+1 ;
which obviously n+ 1 time di¤erentiable on (p; q) we have
' (a) = '0 (a) = ::: = '(n) (a) = 0 and ' (x) = 0 by de�nition of K:
Since ' (a) = ' (x) = 0 then by Roll Theorem there is c1 2 (a; x) such
that '0 (c0) = 0:
Then again by Roll Theorem there is c2 2 (a; c1) � (a; x) such that
'00 (c2) = 0:
Assume that we already has ck 2 (a; x) such that '(k) (ck) = 0; k < n:
Then, since '(k) (ck) = '(k) (a) = 0 we obtain by Roll Theorem
'(k+1) (ck+1) = 0 for some ck+1 2 (a; ck) � (a; x):
Thus we �nally obtain '(n) (cn) = '(n) (a) = 0 and, therefore, by
Roll Theorem there is cn+1 2 (a; cn) � (a; x) such that

'(n+1) (cn+1) = 0 () f (n+1) (cn+1)�(Tn (f ; a))(n+1) (cn+1)�K
�
(t� a)n+1

�(n+1)
= 0 ()

f (n+1) (cn+1)�K (n+ 1)! = 0 () K =
f (n+1) (cn+1)

(n+ 1)!
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:

Since cn+1 2 (a; x) then denoting � :=
cn+1 � a
x� a 2 (0; 1) we obtain

cn+1 = a (1� t) + xt = a+ � (x� a) :

Hence, K =
f (n+1) (a+ � (x� a))

(n+ 1)!
; � 2 (0; 1) and, therefore,

rn (x) =
f (n+1) (a+ � (x� a))

(n+ 1)!
(x� a)n+1 () f (x) = Tn (f ; a) (x)+

f (n+1) (a+ � (x� a))
(n+ 1)!

(x� a)n+1

(Polynomial Taylor fepresentation of f (x) with error in Lagrange form).
Denoting h := x� a we we obtain another form of Taylor representation
for f;namely,

f (a+ h) =
nP
k=0

f (k) (a)hk +
f (n+1) (a+ �h)

(n+ 1)!
hn+1:

If M := sup
x2(p;q)

��f (n+1) (x)�� then for any x 2 (p; q) we have
jrn (x)j �

M

(n+ 1)!
jx� ajn+1 :

Deriving Taylor formula with error rn (x) integral form
(using integration by parts):

By Newton-Leybnitz formula f (x)�f (a) =
R x
a
f 0 (t) dt =

�
u0 = �1;u = x� t

v = �f 0 (t) ; v0 = �f (2) (t)

�
=

(�f 0 (t) (x� t))xa+
R x
a
(x� t) f (2) (t) dt = f 0 (a) (x� a)+

R x
a
(x� t) f (2) (t) dt =24 u0 = � (x� t) ;u = (x� t)2

2
v = �f (2) (t) ; v0 = �f (3) (t)

35 = f 0 (a) (x� a)+ �f (2) (t) (x� t)2
2!

!x
a

+

1

2!

R x
a
(x� t)2 f (3) (t) dt = f 0 (a) (x� a)+f (2) (a) (x� a)

2

2!
+
1

2!

R x
a
(x� t)2 f (3) (t) dt:

Assume that we already have

f (x) � f (a) = f 0 (a) (x� a) + f (2) (a) (x� a)
2

2!
+ ::: + f (k) (a)

(x� a)k

k!
+

1

k!

R x
a
(x� t)k f (k+1) (t) dt

then using ntegration by parts again we obtainR x
a
(x� t)k f (k+1) (t) dt =

24 u0 = � (x� t)k ;u = (x� t)k+1

k + 1
v = �f (k+1) (t) ; v0 = �f (k+2) (t)

35 = 
�f (k+1) (t) (x� t)

k+1

k + 1

!x
a

+
1

k + 1

R x
a
(x� t)k+1 f (k+2) (t) dt = f (k+1) (a) (x� a)

k+1

k + 1
+

1

k + 1

R x
a
(x� t)k+1 f (k+2) (t) dt:

Hence,

f (x)� f (a) = f 0 (a) (x� a) + f (2) (a) (x� a)
2

2!
+ :::+ f (k) (a)

(x� a)k

k!
+
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f (k+1) (a)
(x� a)k+1

(k + 1)!
+

1

(k + 1)!

R x
a
(x� t)k+1 f (k+2) (t) dt:

For k = n we obtain

f (x) = f (a) + f 0 (a) (x� a) + f (2) (a) (x� a)
2

2!
+ ::: + f (n) (a)

(x� a)n

n!
+

1

n!

R x
a
(x� t)n f (n+1) (t) dt =

Tn (f ; a) (x) +
1

n!

R x
a
(x� t)n f (n+1) (t) dt:

So, rn (x) =
1

n!

R x
a
(x� t)n f (n+1) (t) dt:

Using integral Mean Value Theorem we obtainR x
a
(x� t)n f (n+1) (t) dt = f (n+1) (c)

R x
a
(x� t)n dt = f (n+1) (c) (x� a)

n+1

n+ 1
;

for some c 2 (a; x):

Therefore, f (x) = Tn (f ; a) (x) +
f (n+1) (c)

(n+ 1)!
(x� a)n+1 :

Lemma 2.
If a0+ a1 (x� a)+ :::+ an (x� a)n = o ((x� a)n) then a0 = a1 = :::an = 0:
Proof.

lim
x!a

(a0 + a1 (x� a) + :::+ an (x� a)n) = lim
x!a

o ((x� a)n) = 0 =) a0 = 0:

Let k < n: Assuming a0 = a1 = :::ak = 0 we obtain
ak+1 (x� a)k+1 + :::+ an (x� a)n = o ((x� a)n) ()

ak+1 + ak+2 (x� a) + :::+ an (x� a)n�k+1 = o
�
(x� a)n�k+1

�
=) ak+1 = 0:

Hence, by MI we proved a0 = a1 = :::an = 0:

Corollary1.
If

a0+a1 (x� a)+:::+an (x� a)n+o ((x� a)n) = b0+b1 (x� a)+:::+bn (x� a)n+o ((x� a)n)

then ak = bk; k = 1; 2; :::; n:
Proof.

a0+a1 (x� a)+:::+an (x� a)n+o ((x� a)n) = b0+b1 (x� a)+:::+bn (x� a)n+o ((x� a)n) ()

(a0 � b0)+(a1 � b1) (x� a)+:::+(an � bn) (x� a)n = o ((x� a)n) =) ak = bk; k = 1; 2; :::; n:

Corollary 2.

6



If f (x) = a0 + a1 (x� a) + :::+ an (x� a)n + o ((x� a)n) then

ak =
f (k)

k!
; k = 1; 2; :::; n:

Proof.
Follow fom Corollary1 and Taylor Representation for f (x) in Peano form.

Applications.
I. Taylor representation for some elementary functions.
a) Let f (x) = ex: Since f (0) = 1 and f (n) (x) = ex =) f (n) (0) = 1; n 2

N then

ex = 1 +
nP
k=1

xk

k!
+ rn (x) ; where rn (x) =

e�xxn+1

(n+ 1)!
and � 2 (0; 1) :

For any �xed real x we have lim
x!0

rn (x)

xn
= 0 and lim

n!1
rn (x) = 0;that is

T (ex; 0) (x)
convergent for any real x:

Thus, T (ex; 0) (x) =
1P
n=0

xn

n!
= ex; ex = 1 +

nP
k=1

xk

k!
+ o (xn) and since����e�xxn+1(n+ 1)!

���� = e�x jxjn+1

(n+ 1)!
<
e jxjn+1

(n+ 1)!
then jr n (x)j <

e jxjn+1

(n+ 1)!
:

(If x < 0 then

����e�xxn+1(n+ 1)!

���� = e�x jxjn+1

(n+ 1)!
<
e0 jxjn+1

(n+ 1)!
=

jxjn+1

(n+ 1)!
and this

inequality
convenient for estimation of error of Taylor approximation for ex).

b) Let f (x) = sinx: Then f 0 (x) = cosx = sin
�
x+

�

2

�
; f 00 (x) = cos

�
x+

�

2

�
=

sin
�
x+

�

2
+
�

2

�
= sin

�
x+ 2 � �

2

�
:Assuming f (n) (x) = sin

�
x+

n�

2

�
we

obtain

f (n+1) (x) =
�
sin
�
x+

n�

2

��0
= cos

�
x+

n�

2

�
= sin

�
x+

n�

2
+
�

2

�
= sin

�
x+

(n+ 1)�

2

�
:

Thus, by MI we proved that (sinx)(n) = sin
�
x+

n�

2

�
; n 2 N:

Hence, f (n) (0) = sin
n�

2
=

8<: 0 if n even
1 if rem4n = 1
�1 if rem4n = 3

and, therefore,

T2n�1 (f ; 0) (x) = x � x3

3!
+
x5

5!
+ ::: + (�1)n�1 x2n�1

(2n� 1)! ; T (f ; 0) (x) =
1P
n=1

(�1)n�1 x2n�1

(2n� 1)! ;

r2n�1 (x) = r2n (x) =

sin

�
� +

(2n+ 1)�

2

�
x2n+1

(2n+ 1)!
=
cos (�x+ n�)x2n+1

(2n+ 1)!
=

o
�
x2n
�
:
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Since jcos (� + n�)j � 1 then jr2n (x)j �
jxj2n+1

(2n+ 1)!
: So, T (f ; 0) (x) =

1P
n=1

(�1)n�1 x2n�1

(2n� 1)!
convergence to sinx for any real x:

c) Let f (x) = cosx: Then f 0 (x) = � sin = cosx
�
x+

�

2

�
; f 00 (x) =

� sin
�
x+

�

2

�
=

cos
�
x+

�

2
+
�

2

�
= cos

�
x+ 2 � �

2

�
:Assuming f (n) (x) = cos

�
x+

n�

2

�
we

obtain
f (n+1) (x) =

�
cos
�
x+

n�

2

��0
= � sin

�
x+

n�

2

�
= cos

�
x+

n�

2
+
�

2

�
=

cos

�
x+

(n+ 1)�

2

�
:

Thus, by MI we proved that (cosx)(n) = cos
�
x+

n�

2

�
; n 2 N:

Hence, f (n) (0) = cos
n�

2
=

8<: 0 if n odd
1 if rem4n = 0
�1 if rem4n = 2

and, therefore,

T2n (f ; 0) (x) = 1�
x2

2!
+
x4

4!
+:::+(�1)n�1 x

2n

(2n)!
; T (f ; 0) (x) =

1P
n=0

(�1)n�1 x
2n

(2n)!
;

r2n (x) = r2n+1 (x) =

cos

�
�x+

(2n+ 1)�

2

�
x2n+2

(2n+ 2)!
=
cos (�x+ n�)x2n+2

(2n+ 1)!
=

o
�
x2n+1

�
:

Since jcos (� + n�)j � 1 then jr2n (x)j �
jxj2n+2

(2n+ 2)!
: So, T (f ; 0) (x) =

1P
n=1

(�1)n�1 x
2n

(2n)!
convergence to sinx for any real x:

d) Let f (x) = ln (1 + x) :Then f 0 (x) =
1

1 + x
; f

00
(x) = � 1

(1 + x)
2 ; f

(3) (x) =

2

(1 + x)
3 ;

f (4) (x) = � 2 � 3
(1 + x)

4 ; f
(5) (x) =

2 � 3 � 4
(1 + x)

5 ; :::; f
(n) (x) = (�1)n�1 (n� 1)!

(1 + x)
n (Prove

that by MI)

Hence, f (0) = 0; f (n) (0) =
(�1)n�1

n
and, therefore,

ln (1 + x) = x � x2

2
+
x3

3
+ ::: +

(�1)n�1 xn
n

+ :: or ln (1 + x) = x � x2

2
+

x3

3
+ :::+

(�1)n�1 xn
n

+ rn (x)

where rn (x) = o (xn) = (�1)n�1
n!

(1 + �x)
n+1 ; � 2 (0; 1) :

Remark. Taylor series for ln (1� x) without derivatives.
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Let Sn (x) := 1 + x+ :::+ xn�1 =
1� xn
1� x ; x 6= 1: Since for any x 2 [0; 1) we

have

lim
n!1

�
1

1� x � Sn (x)
�
= lim

n!1

xn

1� x = 0 then
1P
n=1

xn�1 =
1

1� x:

We will prove that ln (1� x) = �
1P
n=1

xn

n
; x 2 [0; 1) that is

� ln (1� x) = lim
n!1

R x
0
Sn (t) dt:

We have
R x
0

�
1

1� t � Sn (t)
�
dt =

R x
0

tn

1� tdt () � ln (1� t)�
R x
0
Sn (t) dt =R x

0

tn

1� tdt ()

� ln (1� t)�
nP
k=1

xk

k
=
R x
0

tn

1� tdt:

Since
R x
0
tndt <

R x
0

tn

1� tdt <
R x
0

tn

1� xdt () xn+1

n+ 1
<
R x
0

tn

1� tdt <
xn+1

(1� x) (n+ 1) ()

xn+1

n+ 1
< � ln (1� t)�

nP
k=1

xk

k
<

xn+1

(1� x) (n+ 1) and lim
n!1

xn+1

n+ 1
= lim

n!1

xn+1

(1� x) (n+ 1) =
0

then by Squeeze Principle lim
n!1

�
� ln (1� t)�

nP
k=1

xk

k

�
= 0 ()

ln (1� t) = lim
n!1

�
�

nP
k=1

xk

k

�
= �

1P
n=1

xn

n

e) Let f (x) = (1 + x)� ; where � 2 R�N[f0g : Since f (n) (x) = � (�� 1) ::: (�� n+ 1) (1 + x)��n then
f (n) (0)

n!
=
� (�� 1) ::: (�� n+ 1)

n!
and denoting

�
�

n

�
:=
� (�� 1) ::: (�� n+ 1)

n!
(like bi-

nomial coe¢ cients)

we obtain (1 + x)� =
1P
n=0

�
�

n

�
xn or,

(1 + x)
�
=

nP
k=0

�
�

k

�
xk+

�
�

n+ 1

�
(1 + �x)

��n�1
xn+1 =

nP
k=0

�
�

k

�
xk+o (xn) (binomial

series).
Remark.
Some times calculation f (n) (0) became hard problem or even imposible

because can be performed
throug calculation f (n) (x). For example if f (x) = arctanx then

f 0 (x) =
1

1 + x2
; f 00 (x) =

�
1

1 + x2

�0
=

�2x
(x2 + 1)

2 ; f
(3) (x) =

 
�2x

(x2 + 1)
2

!0
=

23x2 � 1
(x2 + 1)

3 ; and so on ..

We can see that complexity grow up.
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Problem.

Find Taylor series for f (x) = arctanx; arcsinx; ln
1 + x

1� x; ln
1 + x+ x2

1� x+ x2 (use

the following properties

of Taylor operator de�ned as follows: (f; a) 7�! Tn (f) (x) =
nP
k=0

f (k) (a)

k!
(x� a)k).

Properties of Tn (f)
1. Tn (f + g) = Tn (f) + Tn (g) ;
2. Tn (cf) = cTn (f) ;
3. Dx (Tn (f)) = Tn�1 (f

0) ;
4.
R x
a
Tn (f) (t) dt = Tn+1 (F ) (x) ; where F (x) =

R x
a
f (t) dt :

Proof.
We have:

1 Tn (f + g) (x) =
nP
k=0

(f + g)
(k)
(a)

k!
(x� a)k =

nP
k=0

f (k) (a) + g(k) (a)

k!
(x� a)k =

nP
k=0

f (k) (a)

k!
(x� a)k+

nP
k=0

g(k) (a)

k!
(x� a)k = Tn (f) (x)+Tn (g) (x) = (Tn (f) + Tn (g)) (x) ;

2.Tn (cf) (x) =
nP
k=0

(cf)
(k)
(a)

k!
(x� a)k =

nP
k=0

cf (k) (a)

k!
(x� a)k = c

nP
k=0

f (k) (a)

k!
(x� a)k =

cTn (f) (x)

3. Dx (Tn (f)) =

�
nP
k=0

f (k) (a)

k!
(x� a)k

�0
=

nP
k=0

f (k) (a)

k!

�
(x� a)k

�0
=

nP
k=1

f (k) (a)

(k � 1)! (x� a)
k�1

=

n�1P
k=0

f (k+1) (a)

(k � 1)! (x� a)
k
= Tn�1 (f

0) (x) :

4. Let F (x) =
R x
a
f (t) dt then F (a) = 0 and

R x
a
Tn (f) (t) dt =

R x
a

�
nP
k=0

f (k) (a)

k!
(t� a)k

�
dt =

nP
k=0

f (k) (a)

k!

R x
a
(t� a)k dt =

nP
k=0

f (k) (a)

(k + 1)!
(x� a)k+1 =

n+1P
k=1

f (k�1) (a)

k!
(x� a)k =

n+1P
k=1

F (k) (a)

k!
(x� a)k

Note that o ((x� a)n)+o ((x� a)n) = o ((x� a)n) ; o ((x� a)n) = o ((x� a)n) ;
(o ((x� a)n))0 = o

�
(x� a)n�1

�
:

Lemma 3.
Let ' (x) = o ((x� a)n) and ' (a) = '0 (a) = ::: = '(n) (a) = 0:
Then

R x
a
' (t) dt = o

�
(x� a)n+1

�
:

Proof.
Since ' (x) := o ((x� a)n) and ' (a) = '0 (a) = ::: = '(n) (a) = 0 then
' (x) = g (x) (x� a)n and, therefore,

R x
a
o ((t� a)n) dt =

R x
a
g (t) (t� a)n dt =

g (cx)
R x
a
(t� a)n dt = g (cx)

n+ 1
(x� a)n+1 =

10



1

n+ 1
� g (cx) (cx � a)

n

(cx � a)n
� (x� a)n+1 = 1

n+ 1
� ' (cx)

(cx � a)n
� (x� a)n+1 :

Hence, lim
x!a

R x
a
o ((t� a)n) dt
(x� a)n+1

=
1

n+ 1
lim
x!a

' (cx)

(cx � a)n
= 0 =)

R x
a
o ((t� a)n) dt =

o
�
(t� a)n+1

�
:

Problems.
1. Find limits.

a) lim
x!0

cosx� e� x2

2

x4
; b) lim

x!0

ax + a�x � 2
x2

; c) lim
x!0

�
1

x
� 1

sinx

�
;

d) lim
x!0

ex sinx� x (1 + x)
x3

; d) lim
x!0

1

x

�
1

x
� cotx

�
; e) lim

x!0

�
x� x2 ln

�
1 +

1

x

��
:

2. For which a; b holds x� (a+ b cosx) sinx = o
�
x5
�
:

Estimate errors of the following approximations:

3. a) sinx � x� x
3

6
; jxj � 1

2
; b) tanx � x+ x

3

6
; jxj � 0:1;

c)
p
1 + x � 1 + x

2
� x

2

8
:

4. For which x holds
����cosx� �1� x22

����� < 0:0001:
Additional problems with solutions.
1. Sum of one power series.

Find the sum
1P
n=1

(2n� 1)!!
(2n)!!

xn:

Solution 1.

Let S (x) :=
1P
n=1

(2n� 1)!!
(2n)!!

xn:Since Taylor series for
1p
1� x

= (1� x)�1=2 =

1 +
1P
n=1

�
�1=2
n

�
(�x)n and�

�1=2
n

�
=
(�1=2) (�1=2� 1) ::: (�1=2� n+ 1)

n!
=
(�1)n (2n� 1)!!

2nn!
=
(�1)n (2n� 1)!!

(2n)!!

then
1p
1� x

= 1 +
1P
n=1

(2n� 1)!!
(2n)!!

xn and, therefore, S (x) =
1p
1� x

� 1:

Solution 2. (Direct, without using Taylor expansion for
1p
1� x

).

Let T (x) =
1P
n=1

(2n� 1)!!
(2n� 2)!!x

n�1: Since
(2n+ 1)!!

(2n)!!
=
(2n� 1)!! � 2n

(2n)!!
+
(2n� 1)!!
(2n)!!

=

(2n� 1)!!
(2n� 2)!! +

(2n� 1)!!
(2n)!!

then
(2n� 1)!!
(2n)!!

=
(2n+ 1)!!

(2n)!!
� (2n� 1)!!
(2n� 2)!! and

S (x) =
1P
n=1

(2n� 1)!!
(2n)!!

xn =
1P
n=1

(2n+ 1)!!

(2n)!!
xn �

1P
n=1

(2n� 1)!!
(2n� 2)!!x

n =

1P
n=1

(2n+ 1)!!

(2n)!!
xn�x

1P
n=1

(2n� 1)!!
(2n� 2)!!x

n�1 =
1P
n=2

(2n� 1)!!
(2n� 2)!!x

n�1�x
1P
n=1

(2n� 1)!!
(2n� 2)!!x

n�1 =

T (x)� 1� xT (x) = T (x) (1� x)� 1:
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Noting that S0 (x) =
1

2

1P
n=1

(2n� 1)!!
(2n� 2)!!x

n�1 =
1

2
T (x) we obtain

T (x) = 2S0 (x) and, therefore,
S (x) = 2S0 (x) (1� x)� 1 () S (x) + 1 = 2 (S (x) + 1)

0
(1� x) ()

(S (x) + 1)
0

S (x) + 1
=
1

2
� 1

1� x () ln (S (x) + 1) =
1

2
ln

�
1

1� x

�
+ c:

Since ln (S (0) + 1) = ln (0 + 1) = 0 and
1

2
ln

�
1

1� 0

�
= 0 then c = 0

and, therefore, S (x) + 1 =
1p
1� x

() S (x) =
1p
1� x

� 1:

2. One limit related to Taylor Formula.
Let f 2 Cn+1 ((�1; 1)) ; f (n+1) (0) 6= 0; n � 1 and for any x 2 (�1; 1)
the value �x = �x;n is determined as number � 2 (0; 1) such that

f (x) =
n�1P
k=0

f (k) (0)

k!
xk +

f (n) (�x � x)
n!

xn:Find lim
x!0

�x:

Solution.

Since j�xxj < jxj then lim
x!0

f (n) (�x � x)� f (n) (0)

�x � x
= f (n+1) (0) :

From the other hand we have f (x) =
n�1P
k=0

f (k) (0)

k!
xk+

f (n) (0)

n!
xn+

f (n+1) (�1 � x)
(n+ 1)!

xn+1;

where �
0
= �x;n+1 2 (0; 1)

Hence,

f (n) (�x � x)
n!

xn =
f (n) (0)

n!
xn+

f (n+1) (�1 � x)
(n+ 1)!

xn+1 () f (n) (�x � x) = f (n) (0)+
f (n+1) (�1 � x)

n+ 1
x ()

f (n) (�x � x)� f (n) (0)

�x � x
� �x =

f (n+1) (�1 � x)
(n+ 1)

:

Since f 2 Cn+1 ((�1; 1)) then lim
x!0

f (n+1) (�1 � x) = f (n+1) (0)
and, therefore,

lim
x!0

f (n) (�x � x)� f (n) (0)

�x � x
� �x =

1

(n+ 1)
lim
x!0

f (n+1) (�1 � x) ()

lim
x!0

f (n+1) (0) lim
x!0

�x =
f (n+1) (0)

(n+ 1) �
() lim

x!0
�x =

1

n+ 1
:
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