Taylor series (lecture notes)
Arkady M. Alt
For any function f which has continuous derivative of order n on the
segment [c,d] and derivative of order n + 1 on (¢,d) and for any a € (¢, d)
f*) (a)
k!
Taylor’s Polynomial for function f with node a (degT,, (f;a) (z) <nif T,
isn’t zero polynomial).
So, we have the correspondence (f,n,a)— T, (f;a)(x).
If f/ infinitely times differentiable then we get the infinite sequence of
Taylor’s polynomials:

2 which we call

we will definepolynomial T}, (f;a) (z) := f (a)+ >
k=1

Ty (f:0) (&) = £ (a), T3 () () = £ ) + 02 (0 0) 13 (1) () =
fa)+ fl(!a) (x —a)+ fT(ﬁ)(z—a)Q,...,
/(@ 7" (a) 1) (@)

T, (f10) (z) = f (a)+ = (2 = a)+ 7, (z —a)’+..+ S @—a)
where T,, (f;a) (x) can be considered as partial sum of the series

< fk) (g
(infinite formal sum) T (f;a) (z) := f (a) + 21 ! k:!( ) (z—a) =

S f(n) (a) n (0) . .
> o (x —a)" (here f% (a) = f (a)) which we call Taylor series

for function f and point a.

Now the two natural questions:

1. What is condition of convergence of this series;

2. When this infinite sum equal to f () (in the case of convergence).

Let rp, (2) := f (2)=Ty (f;a) (z) If 7L1LII;O rn () = 0then T (f; a) () convergence

to f (), that is f(2) = lim T, (f;a) (z) = T (f;0) ().

In the supposition that f is function which has continuous derivative of
order n on the segment [c, d] and derivative of order n 4+ 1 on (¢, d) we
obtain r%m) (a) =0 for any m=1,2,..,n.

Indeed, since r,(lm) (z) = fO) (z) — (T, (f; a) (x))(m) =

(m) n (k1)
fim) (gc)ffim).m!f(zfa) > <w'k(kl)...(km+1) (ma)k—l) N
m! k=m+1 k!
T7(zm) (a) =0 for any m =0,1,,2...,n.
Definition.
Let lim f (z) =0 and lim g (z) = 0 then if lim fgxi = 0 we say that
r—a r—a I—ng x

f (z) in the point a has order of smallness bigger the g (x) and
write down that as follows f () = o(g(z)).
In particular f(z) = o((z —a)") if lim (f(x))n =0.
z—a (T — a
Obvious that:



1. c-o((x—a)") =0(g(x)) for any constant c;

2. 0((967—(11) =o0 ((m — a)"fk) Jforany k=1,2,....,n—1 and if kK = n then
(x—a)

w_o(l) (f(2) =0(1) < lim f(z) =0);

3. (z—a)o((z—a)")=0 ((m - a)n+k) for any k € N.
4 o((z—a))+o((x—a)™) =o ((z - a)mi“{”vm}) .

Lemma 1 .
Let f differentiable of order n — 1 in any = € (a — ¢,a + ) for some ¢ and
has derivative of order n in the point a and £ (z) is continuous in a.
Then f (z) = o((z — a)") iff f(a) = f'(a) = ... = f() (a) = 0.
Proof (by Math Induction).

Sufficiency
1. Base of MI.
Let n = 1. Since tby Mean Value Theorem there is

—  ——= [ (a,z) ifx>a
el (a={ @)

f@) _ 1@~ 1)

such that = f'(c;) and lim ¢, = 0 then
T —a T —a z—a
lim /(@) = lim f'(c;) = f' (lim cx) =f"(a)=0
T—a T — Q r—a T—a
(because f’ is continuous in a). Thus, f (z) = o((x — a)).
2. Step of MI.
Let f(a) = f' (a) = ... = f (a) = f®*Y (a) = 0 and "+ (z) is

continuous in a.And let g (z) := ' (z). Then

flla)= .= (a) = f"(a) =0 = g(a) =g (a) = ... =" (a) =0

and by supposition of MI we have g (z) = o ((x —a)"), i.e.
Lo g(@)
lim ——5 =0.

z—a (z—a)"

: fl@) o f@)—fe) 1T, L
L L - v
/ _\n . n
lim f (cm)n (ea a)n — lim g (cg) . Cx—a _
z—a \ (c; —a)" (r—a) e—a \ (¢; — a) zT—a
because lim ¢, =0 =— lim Lr)n = lim 9(ca = =0
z—a z—a (c; — a) cz—a (Cy — a)
and |29 < 1. So, lim%zo.
T—a =a (r —q)
Necessity.

Let n € Nand f(z) =o0((x —a)"). Obviously that f(a) =0 and



flx) = fla) _

7= i HE T - i 72— gy 20— o (- ) =
Since 1y, (@) =7, (a) = ... = i (a) =0 then r, (z) = o ((x — a)"™)

and we obtain

"(a "(a 9 (n a n
ot —a)") = ) = f @+ 2 (o - )+ DD a4 LD oy, )
"(a "(a (n
@ f@r D @0 D @ ape D o ) @) = 0 (@ - )

Passing in (1) to the limit when © — a we obtain f (a) = 0.
Then

f'(a)  f"(a)

(n o) ;U—a,n —1 /
0=yt T gyt S D) (oo t) = @) =0

1! 2! n! T—a
and so on ... For any k < n assuming f (a) = f'(a) = ... = f®) (a) = 0
B e, M@, .
W(m—a) +..+ . (x—a)"'=o0((x —a)") <
(k+1) (n—k—1
f(k - 1()‘?) ol ~ 1@ (= (=) = f& @) =o.

Let f infinitely times differentiable in a. Then f(™) (z) is continuous in a
for any n € N and now we can apply this Lemma to

rn () = f(x) — T, (f;a) (x) and obtain r, (z) = o ((x — a)")
Thus, in that case f (z) = T}, (f;a) (z)+o ((x — a)") .(It is Polynomial Taylor
representation of f (z) with error in Peano form or, shortly Peano form of
Taylor representation for f (z) ).

Corollary from Lemma 1 .
Let f differentiable of order n — 1 in any = € (a — ¢,a + ) for some ¢ and
has derivative of order n in the point a and £ (z) is continuous in a.
Then function g (z), such that g (z) is continuous on (a —e,a +¢) and
f(z)= (x - a) g (x) holds in (@ — ¢,a + ¢) exists iff

1 (a

fla)=f"(a)=..=f" (a) =0.
Proof.
Sufficiency
f@ L,
Let f(a) = f'(a) = ...= f (a) = 0 and let g (z) := (xa f)n,



f(x)

Since lim B =0 then g (x) defined by such way is continuous in a.
z—a (r —a

Necessity.

let f(x) = (x —a)" g (z) ,where g is continuous in a.Then

f(x)

f@)==a)g) = oo =g) =

mmzo = f@=ow—a)") = fa)=F (@)= .= /") (a) = 0.0

T ()

Since lim ( B = 0 then for any ¢ > 0 there is 0 < § < 1 such that
z—a (r —a
n (LU) n
for any © € (a — d,a + J) we have Gy <e = |y (2)] <ed" =
xT—a

lim r, () = 0 and, therefore,
n—oo

I T, (fi0) (@) = f (1) <= [ (&) =T (f:a) (2)

for any « € (a — d,a +9).
Peano form wery convenient for finding limits, but more information of
error 1, () give Lagrange form.
Let f (x) has on [p,q] continuous derivative of order n and derivative of
order n 4+ 1 on interval (p,q).
For fixed x € (p,q) and any t € (p,q) we will find constant K
(not depends from t) such that

o () = f () =Th (fia) (t) = K (z — )" that is K := Lﬁ”)ﬂ
(z—a)"
Then for any ¢ € (p,q) denote o () := f (¢) — T, (f;a) (t) — K (t —a)" ",
which obviously n + 1 time differentiable on (p, ¢) we have
¢(a) = ¢ (a) =...= o™ (a) = 0 and ¢ (z) = 0 by definition of K.
Since ¢ (a) = ¢ (z) = 0 then by Roll Theorem there is ¢; € (a,z) such
that ¢ (cg) = 0.
Then again by Roll Theorem there is ¢o € (a,¢1) C (a,x) such that

¢" (c2) = 0.

Assume that we already has ¢, € (a,z) such that o) (c) = 0,k < n.
Then, since p*) (¢;) = ¢¥) (a) = 0 we obtain by Roll Theorem
@ F+) (cpyq) = 0 for some cx 11 € (a,cx) C (a,2).
Thus we finally obtain ¢ (¢,) = ™ (a) = 0 and, therefore, by
Roll Theorem there is ¢p41 € (a,¢,) C (a,z) such that

(n+1)

P (1) =0 = fOD ()= (Ta (F:0) "D () K (6 - 0)" ") 0=

f(n_H) (cnt1)

(n+1) CK(n41) = k=11
f (CTL+1) (TL+ ) 0 (TL+].)'

S



Cn41 — G

Since ¢p41 € (a,x) then denoting 6 :=
T—a

thi1=a(l—t)+at=a+0(x—a).

Hence, I — fOY (a+ 0 (z —a))
(n+ 1!

€ (0,1) we obtain

,0 € (0,1) and, therefore,

fFr (a + 0 (v — a))

(1‘ - a)n+1 — f (JI) =T, (.fv (1) ('T)+

(@) = (n+1)!

(Polynomial Taylor fepresentation of f (x) with error in Lagrange form).
Denoting h := z — a we we obtain another form of Taylor representation

for fnamely,
n fOHD (a4 0h)
— (k) kyJ =TT
Flath) = 35 0 @ n+ T

If M := sup |f("+1) ()| then for any z € (p,q) we have
z&(p,q)

M
I @) <

Deriving Taylor formula with error r, (z) integral form
(using integration by parts):

hn+1

| . |TL+1

By Newton-Leybnitz formula f (z =[Tr( [ y :Qi;(;)l’:, z x_}(;) )
(—f (&) (@ = t)+ [, ( J;@)( )dth'(a)(w—a )+, (x—1t) f&) (1) dt
/ (x t) — 2\’
i ] - (o055
v = a
2
PP O @ at= £ (@) @ - )@ @) T L 0 0 g an
Assume that we already have , ' ' .
F@) = fla) = 7@ @ —a)+ 1 @) Co g @ E
o Tz —0)" FEED (1) dt
" then using ntegration by parts again we obtain .
kL
fx' (@ — t)k FOFD () dt = u=—(x— t) U= 7( k; —:i)l _
' = U (1) 0 = {0 (1)
<_f R ﬂﬁl ) ”ﬂg I = M (0 de = O (a) w+
e =0 0 gy ar
Hence, .
—a)® T—a
F@)~ fla) =7 (@) - a)+ 1@ @) T g @ B

2 k!

]:



D) () (x—a)k+1 . 1 f:x( _t)k-',-l FO42) (1) d
N TR PSR '

For k = n we obtain
f@) = Fla) + £ (@) (@ = a) + £ (@)
I ) O (1) d =
T (f50) () + o [ (0= 0)" f00) (0

So, r, (z) = %f: (z —t)" fHD (t) dt.

Using integral Mean Value Theorem we obtain

Jo (@ =) fOED () dt = fOHD (o) [7 (@ — )" dt = [0 (o) (

a

(2 — )’
2!

+ ot ) (a) (‘”;7,“)71 +

T — a)n+1

n+1

)
for some ¢ € (a,x).

Therefore, f (x) =T, (f;a) (x) + S (e)

(n+ 1)| a)n+1 )

(z—
Lemma 2.

Ifag+ai(x—a)+..+a,(z—a)" =o((x —a)") then ag = a; = ...a,, = 0.
Proof.

lim (ap+ a1 (z—a)+ ...+ a, (z —a)") = limo((x —a)") =0 = a9 =0.

r—a r—a

Let k < n. Assuming ag = a; = ...ar = 0 we obtain
ar1 (@ —a)" L Ha (@ —a)" =0((z—a)") =

Ahi1 4 appo (@ —a) + .4 an (@ —a)" T =0 ((:c — a)’hk+1> = agy1 =0.
Hence, by MI we proved ag = a1 = ...a,, = 0.

Corollaryl.
If

ao+ay (z — a)+...+a, (r —a)"+o ((x — a)") = bo+b1 (x — a)+...+b, (x — a)"+o ((z — a)™)
then ar = b, k=1,2,...,n.
Proof.

aotar (z —a)+..4a, (x —a)"+o((x — a)") = bo+by (x — a)+...4b, (z — a)"+o ((x — a)")

(ap — bo)+(a1 —b1) (z — a)+...+(a, —by) (. —a)" =o((x —a)") = ar = b,k =1,2,...,n.

Corollary 2.



Iff(xr)=ay+ai(z—a)+..+a,(x—a)" +o((x—a)") then

f(k) B
F,k = 1,2,...,71.
Proof.

Follow fom Corollaryl and Taylor Representation for f (x) in Peano form.

ap =

Applications.

I. Taylor representation for some elementary functions.

a) Let f(z) =¢" Since f(0) =1and f™ (z) =e* = fM(0)=1,n¢
N then

n l'k eewmn—i-l
ewzl—i-kz::lﬂ—&—rn(x),Wherern(x):m and 0 € (0,1).
For any fixed real z we have lir% @ = 0 and lim r, (z) = O,that is
r— x n— oo

T (e7;0) (x)
convergent for any real x.

() n n k
Thus, T (e*;0) (z) = Y. . ety et =1+ A o(z™) and since
n=0 n! k=1 k!

et et el ™
= en |r, (x .
(n+1)! (n+1)! (n+1)! (n+1)!
Ox,.n+1 Ox n+1 0 n+1 n+1
(If x < 0 then < _ elal ¢ lz] = i and this
(n+1)! (n+1)! (n+1)! (n+1)!

inequality
convenient for estimation of error of Taylor approximation for e%).

b) Let f (z) = sinz. Then f’ (z) = cosz = sin (ac + g) , [ (z) = cos (m + Z) =

2
sin (m + g + g) = sin (m +2- g) Assuming £ (z) = sin (1: + %) we
obtain ( D
!
(n+1) :(( ”l)): ( @>:< nr E>:~ i+ hm)
f (z) sin (z + 5 cos |z + 5 sin (z + 5 —|—2 sin |z + 5
Thus, by MI we proved that (sin x)(") = sin (a: + %) ,meN.
0 if n even
Hence, (™ (0) = sin -5 = 1if remyn =1  and, therefore,
—1if remyn =3
Lo (F0)@) = o~ 5+ 5 4 b () T (10) (@) =
ot B 3 s T @En—1nI" -
o) o1 x2n71
1"
0 gy
) 2n+1)7
9 2n+1
Ton—1 () = rop (z) = = ( ’ 2 _ cos (fz + nm) 22T
oA e (2n+1)! B (2n+1)! B



|x|2n+1 00 p2n—1
Since |cos (0 + nm)| < 1 then |ra, (z)| < o So, T (f;0)(x) = nzz:l (-t e
convergence to sinz for any real x.
. T
c) Let f(z) = cosz. Then f'(z) = —sin = cosm(x+§), " (x) =
Y o - ™ 7r nmw
. 200 o . . @ : (n) — . o
cos (x—|— 5 + 2) cos (a:—|—2 2) Assuming '™ (z) = cos (x—l— 5 ) we
obtain ,
(n+1) () — PTNY - g Ty LTy -
f (x) (cos(:zc—i— 2)) sm(m—i— 2) cos(x—i— 2 +2)
1
cos ( + w
Thus, by MI we proved that (cos x)(n) = cos (;E + %T) ,neN.
nr 0 if n odd
Hence, f™ (0) = cos — = 1if remyn =0  and, therefore,
—1if remun = 2
ZC2 .’E4 1 xQn %) . x2n
Ton, (f; =1-4 . +(=D)" T (f; = -1 ,
‘ 2n+1)7 22
o (&) = ot () = — <9x T _ cos (B +nm) 2
At el A (2n +2)! B (2n +1)! B
0 (x2n+1) .
o+ S
Since |cos (0 + nm)| < 1 then |rg, (z)| < sl So, T (f;0) (x) = n§1 (1)~ ol
convergence to sinz for any real x.
1 1 1
d) Let f(z) =In(1+z).Then f’' (z) = , T) = — B (z) =
) Lot £(5) = (1-+.2) Then 1/ (0) = . (8) = = 1O @)
2
(1+2)*
2-3 2-3-4 _ - 1!
5O (@) = 20 0 ) = 20 ) = (-1 S prove
(1+2) (1+2) (1
that by MI)
(_1)n—1
Hence, f(0) =0, f (0) = ~——— and, therefore,
n
2?2 (=) g x?
In(1+x) —:El—?—i—?—}—...—}—T—i—.. or In(1l+x) —x—?—i—
a3 D i
§+...+%+m(z) |
_ n!
where 7, (z) = 0 (z,) = (-1)" ' ———— 0 €(0,1).
)=o) = (' o 0O

Remark. Taylor series for In(1 — z) without derivatives.



1—2a"

Let Sy (z) :=14z+..+a" 1= ,x # 1. Since for any z € [0,1) we

have )
x" &
li - S, =1l =0 th n-l — .
nLH;o —x S (l’)) nLH;o 1—2 0 then n{:lz 1—2x
o0 n
We will prove that In (1 — a:) =—> %,x € [0,1) that is
n=1
—In(1—2)= hm fo n (t) dt.
1 z t"
We have [ (H—Sn(t)> dt = [; T3 ——dt <= —In(1—1t)— [ Sn =
z "

—dt =

) 1—t
n x t7L
CIn(1—t T
Il( ) ; k' fO 1
l,n+1 - tn
Since fO thdt < f dt < fO 17dt < m < fO mdt <
xn+1

(I-2z)(n+1)

$"+1 n .CI} xn—&-l xn+1 n+1

~In(1-t e T andlim Y = lim =

n+1< n( )~ z:: k (1fx)(n+1)an | nLI%o(l—m)(nJrl)

0
n k
then by Squeeze Principle lim (— In(1—¢t)— > x> =0
o =1 k

In(1—t)= lim (_i“}f):_zn

n=1 T

e) Let f(x) = (1+x)", where a € R\NU{0}. Since f (z) = a(a—1)...(a —n+1)(1+2)*"" then

™ (0 1) (a—n+l . (a—n+1
! ():a(a ).la—n+ )anddenoting @ ::a(a ). la—n+ )(likebi—
n! n! n n!
nomial coefficients)
we obtain (1+2)% = > (a) ™ or,
n=0 \T
(1+2)" = kgo (2) $k+(ni 1) (14 02)* " tgntl = kgo (Z) 2¥40(2") (binomial
series).
Remark.

Some times calculation £ (0) became hard problem or even imposible
because can be performed

throug calculation £ (x). For example if f (z) = arctan z then

/ o 1 ’_ —2x _ —2z I_
fl(z) = 1+x2,f (r) = <1—|—$2) = (1’2—1—1)27]0(3) (z) = (W) =
2322 — 1

(22 +1)°
We can see that complexity grow up.

, and so on ..



Problem.
1+ 1+ x4+ 22

Find Taylor series for f () = arctan z, arcsin z, In T In Tp——— (use
the following properties
n £k
of Taylor operator defined as follows: (f,a) — T, (f) (z) = >_ 1t ;l(a) (z —a)").
Properties of T, (f) =
L To(f+9)=Ta(f) +Tu(9);
2. T, (cf)=cTn(f);
3. Du (T (f)) = Tur (f');
4. [TT,(f) (t)dt = Toy1 (F) (x), where F(z) = [ f(t)dt .
Proof.
We have: * w w
1Tn(f+g)($)zz(f+g)' (a)(x—a)k: f (a)—’—'g (a)(x—a)k:
) S = 8§
P o apr s £ (o ) = T, () (04T (9) (@) = (T () + T (9)) ),
k=0 k! k:(’S) k!
n n k n k

27, (o) ) = 32 D o o SO i S

k=0 k k=0 k k=o K

f(k) (a’) (ZC _ a)kfl o

(k—1)! N

n=l fle+1) (CL) —a k _ N (z

= oy @0 =T (@) .

4. Let F (z) = [ f(t)dtthen F (a) = 0 and [ T, (f) (t)dt = [ <k2_jo f k!(a) (t— a)k>
no f0) (a) . ko & % (a) 1 D (a) ok
&R e Umard =y e = s T (e =

k=

1

o (z —a)"
Note that o ((z — a)")+o((z —a)") =o((x —a)"),0((z —a)") = o ((z — a)"),
(0((w-a)") =o(@=-a)").

Lemma 3.

Let o (z) =o((x —a)") and ¢ (a) = ¢’ (a) = ... = ™ (a) = 0.

Then [ ¢ (t)dt =0 ((m - a)"“) .

Proof.

Since ¢ (z) == o ((z — a)") and ¢ (a) = ¢ (a) = ... = (™ (a) = 0 then

¢ (z) =g (x) (x —a)" and, therefore, [T o ((t—a)")dt = [T g(t)(t —a)" dt =

T n _g(ci) n+l _
g(ca) [, (t—a) dt—n+1(aj—a) +l_

10



1 g (Ca:> (Cac - a)n
n+1 (c; —a)" n+1l (c;—a)"
[oltt—ayydr 1 plen

. (m _ a)n+1 . 1 P (Cz) ) (.’L’ _ a)n+1 .

(t—a)")dt=

H ) 1 = w = 0 — ©
enee (z—a)" ™ n+1z—a(c; —a) Jurof
0 ((t - a)"“) .
Problems.
1. Find limits. )
cosaL"—e_T7 a®+a -2 1 1
lim —M8M— 1 - li — :
a) 720 x*  b) lim x? i ©) 220 <x sin:c) ’
Tsing —x (1 1/1 1
d) lim &0 3 2 —l—x) ;d) lim (—cotx);e) lim <x—x21n(1+)>.
x—0 x€X a:~>0 x x—0 xX

2. For which a,b holds z — (a + bcosz)sinz = o (2°) .
Estimate errors of the following approximations:

. a: 1 3
3. a) sinz~x— |x|<f b) tanx =~z + —, |z| <0.1;
2

c) \/1+x%1+§—%.

22
cosx — <1 — 2)‘ < 0.0001.

Additional problems with solutions.
1. Sum of one power series.

4. For which z holds

< (2n — 1!
Find the sum n§1 (7(127l)|')x”

Solution 1.

Let S (z) := nz::1 Wm .Since Taylor series form—(l x)
1+ Z < 1/2>( z)" and
1/2 (-1/2)(-1/2-1)...(-1/2=n+1) (-D)"2n-1" (=1)"(2n— 1!
( n ): n! - 2mn]! - (2n)!!
1 2n -1 1
then Vi 1-|-n21 @ ~————2"2" and, therefore, S (z) = — 1.
Solution 2. (Direct, without using Taylor expansion for \/%)
X 2n-D" o e+ 2n-1!-2n (2n-1)!

LetT(@) = 2, E%Qi!f“ e TR O T + (2n)!') =
2n—1"  (2n-—1N b 2n—-D"  2n+D!  (2n -1 d
G2t T enn MM T ean T @t @a—2n

2 @2n-1" = e+ X 2n =D
i B 5 G G
< (2n+D ) (2n—1)” > (2n— 1! . X 2n—-11"
D RPN U e TP P o g 1T BN T
Tx)—1—aT(x)=T(z)1—2) -1

11



< In(S (z)

Noting that S’ (z) = % O_O E;Z : ;;”x"_l = %T (z) we obtain
T (z) =25 (z) and, therefore
S(:Jc):QS’(x)( x)—1<:>5’()+1—2 (S(x)+1) (1—-2)
(S (z)+1) 1 lln ( )
2 1-—

1
S(z)+1 T2 1-g
Jr

Since In (S (0) > =0thenc=0

1
)=l (0+1)—Oand (1 -
1 1
and, therefore, S (z)+1= Vi — S(z) = NVieri

2. One limit related to Taylor Formula.
Let f € C"*1((—1,1)), £tV (0) #0,n > 1 and for any = € (—1,1)
the value 0, = 0, ,, is determined as number 6 € (0,1) such that

SO0 1,

k=0 k' 7?,'

Solution.
S (0, -x) — ™ (0)

z) 2™ .Find lim 6.
z—0

— f(n—i—l) (0) .

Since [0 x| < |z| then hn%)
T—

0, x

n—1 (k) (n) (n+1) .
From the other hand we have f (z) = kX::O / k!(()) zk+ / n!(O) x"+ / (n +(f;! 2) L
where § = Oy mn+1 € (0,1)
Hence,

[ Oa) 0 FO0) 0 SO O 2) s () _ i gy L (01 )
" ot = "+ mt 1) x — M0y -x)=f"(0)+ ——] z
O Oe2) = JOO) S0 (0 0)

Oy v (n+1)

Since f € C"*1((—1,1)) then hn%) fOrD (9, - x) = D (0)
and, therefore,

F (0, - x) — £ (0)

i 0, = —— (n+1)
Jim, 0, -z b (n+1) Jim f0 (010 2) =
(n+1) 0) 1
(n+1) () i _ SO ~ .
ill%f (0 )xhgbex (n+1)0 — xhi%ex n+1
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